Tensile and Morphological Properties of Microcellular Polymeric Nanocomposite Foams Reinforced with Multi-walled Carbon Nanotubes

نویسندگان

چکیده مقاله:

Polyamide 6 (PA6) is used in many applications due to its advantages and improving its properties seems essential. For this purpose in the present study, PA6 was melt compounded with various multi-walled carbon nanotubes (MWCNTs) contents and then was foamed using Azodi carbon amide (ACA) as blowing agent under different injection molding conditions. Morphological properties were investigated using X-ray diffraction (XRD) and scanning electron microscopy (SEM) tests. The results demonstrated that an appropriate distribution of MWCNTs was observed in polymeric matrix and 0.85, 0.94 and 1 Å increase in distance between walls of CNTs was observed. Also, the SEM results illustrated that microcellular structure was achieved in all samples. The results illuminated that mean cell size was improved about 34% in samples containing 1 wt% MWCNT. The tensile properties of samples were investigated and the effect of MWCNTs content was studied on specific tensile and yield strengths. The results indicated that specific tensile strength and yield strength were significantly increased almost 164% and 147% by addition of 1 wt% of MWCNTs, respectively.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanical properties of CNT reinforced nano-cellular polymeric nanocomposite foams

Mechanics of CNT-reinforced nano-cellular PMMA nanocomposites are investigated using coarse-grained molecular dynamics simulations. Firstly, static uniaxial stretching of bulk PMMA polymer is simulated and the results are compared with literature. Then, nano-cellular foams with different relative densities are constructed and subjected to static uniaxial stretching and obtained stress-strain cu...

متن کامل

Mechanical properties of multi-walled carbon nanotubes reinforced polymer nanocomposites

Carbon nanotubes (CNTs ) are considered to be one of the novel reinforcement for developing advanced nanocomposites due to their outstanding thermo-mechanical properties. Multi-walled carbon nanotubes (MWCNTs ) are developed by arc discharge method. To enhance the dispersion of CNTs in polymer matrix, CNTs are modified with chemical treatment and processed by ultrasonication process. Surface ch...

متن کامل

investigation of the electronic properties of carbon and iii-v nanotubes

boron nitride semiconducting zigzag swcnt, $b_{cb}$$n_{cn}$$c_{1-cb-cn}$, as a potential candidate for making nanoelectronic devices was examined. in contrast to the previous dft calculations, wherein just one boron and nitrogen doping configuration have been considered, here for the average over all possible configurations, density of states (dos) was calculated in terms of boron and nitrogen ...

15 صفحه اول

Investigation of Mechanical Properties and Morphology of Multi-Walled Carbon Nanotubes Reinforced Cellulose Acetate Fibers

Cellulose acetate (CA) fibers were reinforced with multi-walled carbon nanotubes (MWCNTs) at 0.5%, 1.0%, 1.5% and 2.0%. Yield strength, ultimate tensile strength, fracture strain and toughness of the nanocomposite fiber increased up to 1.5 wt. % of the carbon nanotube (CNT) loading, however, further inclusion (2.0%) of MWCNTs in CA decreased the mechanical properties. Experimental properties we...

متن کامل

Wave-Absorbing Properties of Multi-Walled Carbon Nanotubes Reinforced Cement-Based Composites

Multi-walled carbon nanotube (MWCNT)/Portland cement (PC) composites have been prepared to evaluate their electromagnetic wave absorbing properties. The effects of MWCNTs content and sample thickness were discussed in the frequency ranges of 2–18 GHz. Results show that the absorbing properties of cement-based composites are affected by the content of MWCNT and the thickness of the samples. When...

متن کامل

Preparation of PMMA/MWNTs Nanocomposite Microcellular Foams by In-situ Generation of Supercritical Carbon Dioxide

Nanocomposites containing poly(methyl methacrylate) (PMMA) and surface functionalized Multi-Walled Carbon Nanotubes (MWNTs) were synthesized. The dispersion of MWNTs in PMMA was characterized using Transmission Electron Microscopy (TEM).The synthesized nanocomposites were successfully foamed using a simple method based on the in-situ generation of supercritical carbon dioxide (CO2</sub...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 31  شماره 3

صفحات  504- 510

تاریخ انتشار 2018-03-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023